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Abstract (75 Words) 
Time-of-use (“TOU”) electricity rates are challenging to design and results often rely on a 
regulator’s subjective sense of reasonableness.  Here, I describe an objective method to develop 
TOU rates using optimization techniques.  The method identifies rates which minimize the 
difference between TOU and hourly costs, thereby ensuring rates are efficient and cost based. The 
technique also enables direct comparison of competing designs.  I conclude by demonstrating how 
this methodology could be applied in practice.   

 

Abstract (200 Words) 
The disconnect between price variability of wholesale electricity sales and the uniformity of the 
retail prices observed by most consumers results in well documented inefficiencies.  Time-of-use 
(“TOU”) electricity tariffs offer a middle-ground between dynamic wholesale prices and flat retail 
rates.  A customer subject to a TOU rate has their consumption binned into discrete seasons (e.g., 
summer, winter) and periods (e.g., off-peak, mid, on-peak) – with prices varying by season and 
period.  TOU rates can be challenging to design and the results often rely on a regulator’s subjective 
sense of reasonableness.   

In this paper, I outline a new method for developing multi-season, multi-period TOU rates 
using optimization techniques.  This method identifies optimal TOU tariffs based on granular price 
and load data, using a curve-fitting approach.  These TOU tariffs include explicit tradeoffs between 
different cost categories and between different season or period specifications.  It also offers a 
simple method for comparing the relative efficiency of alternative rate designs, even if those 
designs have different numbers of seasons, periods, or price differentials.  After describing the 
approach, I apply this methodology to a utility in California to demonstrate how it could be 
implemented in practice.   
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1. Introduction 
Prices change rapidly in wholesale electricity markets, as the balance of supply and demand 
constantly changes.  The real-time prices in competitive markets can vary dramatically from 
month-to-month and, increasingly, from minute-to-minute.  By contrast, the prices exposed to most 
end-user customers are generally flat for months or years.  Traditional electricity rates have 
customers paying the same volumetric rate (cents/kWh) irrespective of when that electricity was 
consumed over the course of a billing period.  These flat volumetric rates may vary by season. 
Depending on your perspective, these flat rates are beneficial (because they are simple to 
understand and protect customers from excess price volatility) or harmful (because they abstract 
away price signals that could encourage more efficient use of electricity).  Continued reliance on flat 
rates is also a product of legacy metering or billing systems which cannot handle multiple rate 
periods.   

Irrespective of the rationale, the disconnect between the uniformity of retail sales and the 
variability of wholesale sales results in well documented inefficiencies.i,ii Consumers on flat retail 
rates are not price-sensitive (beyond their total monthly bill) so have no incentive to curtail their 
load as prices rise or system reliability is threatened.iii ,iv, v,vi  Consumers do not have incentives to 
shift their discretionary or flexible energy consumption to lower cost periods which would reduce 
the overall cost of producing electricity.vii  Flat rates may be more expensive for end-user customers 
over the long run, than time-varying rates due to risk premia, hedging, and other costs.viii  Flat rates 
may lead to suboptimal buildout of new supply resourcesix or inhibit the deployment of otherwise 
productive uses of low-cost energy (e.g. electric vehicles).x,xi  And so on. 

Time-of-use (“TOU”) electricity tariffs offer a middle-ground between dynamic wholesale 
prices and flat retail rates.  A customer subject to a TOU rate has their consumption binned into 
discrete seasons (summer / winter) and periods (e.g., off-peak, mid, on-peak) – with prices varying 
by season and period.  On-peak periods will be more expensive than off-peak; and one season will 
typically be more expensive than another. 

The TOU concept was developed more than 50 years ago and has been rolled out to larger 
commercial and industrial customers in many regions.xii  TOU rates remain rare, however, on a 
residential or small-commercial level.xiii While TOU rates are less efficient than real-time pricing, 
they can still address many of the identified inefficiencies of flat rates.  They can increase efficiency 
and improve price formation, reduce peak demands, and promote mid-day load growth to 
counteract the solar-induced “duck curve.”xiv TOU rates rolled out in pilot programs or across utility 
service territories have been shown to effectively shift power consumption away from peak periods 
– saving money for customers, utilities, and society.xv   

Designing TOU rates can be challenging, however.  Into how many seasons and periods 
should the year be divided?  More granular time-periods may better reflect the underlying real-time 
prices but are also harder for consumers to understand.  After settling on the overall number of 
seasons/periods, what months should be in which season, and which hours in which period?  
Various methods have been developed to assess the efficacy of a TOU rate but these do not always 
provide insight how to design a rate in the first place.

xviii

xxiii

xvi , xvii  For those more fundamental questions, 
we have long-standing guides such as Bonbright  or more recent frameworks and best-practices 
from RAPxix, xx, RMIxxi, Synapsexxii, or others.  The range of design considerations, evaluation metrics, 
and embedded policy goals, lead regulators to adopt “close-enough” rates – those where the periods 
look reasonable within some subjective range.    
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In this paper, I outline a new, objective method for developing multi-season, multi-period 
time-of-use rates.  This method algorithmically identifies fixed periods and seasons which most 
closely reflect the underlying, noisy hourly wholesale market energy prices.  It also offers a simple 
and objective method for comparing the relative efficiency of different candidate rate designs.  After 
describing the approach, I apply this methodology to generic utility in California to demonstrate 
how it could be implemented in practice.   

 

2. Theory & Calculation for Establishing TOU Seasons, Periods, & 
Prices 

This TOU estimation technique identifies the seasons, periods, and prices which, when considered 
as a whole, minimizes the price deviations between the underlying hourly prices and the simplified 
TOU rate schedule. 

It searches across the set of possible TOU specifications adjusting the periods and seasons 
of our TOU schedule in pursuit of a solution which minimizes the Sum Squared Error (“SSE”) metric 
between hourly LMPs and the TOU prices.  Due to possible non-convexities in the search space, the 
algorithm relies on a random-restart hill-climbing search technique which finds local minima based 
on many trials with randomly selected starting parameterizations.   

 

2.1 Pricing a Specific TOU Specification 

The algorithm splits the hours of the year into discrete seasons and period.  The algorithm starts by 
cutting the year into 𝑆𝑆 seasons (here, 𝑆𝑆 = 2).  More specifically, the algorithm selects the start-
month of each of the 𝑆𝑆 seasons.   

𝑚𝑚𝑎𝑎 ⋯ 𝑚𝑚𝑏𝑏−1�����������
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐴𝐴

    |   �⃖�����⃗  𝑚𝑚𝑏𝑏 ⋯ 𝑚𝑚𝑎𝑎−1�����������
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐵𝐵

  

Assuming the cuts occur in February and June; then the year is split into two seasons with Season A 
running February though May, and Season B running June through January.  If the second cut was in 
July instead of June, then the Season A would be a month longer and Season B a month shorter.  
Additional “cuts” could be incorporated to create a tariff with more than two seasons. 

Next, the algorithm splits the hours of each season of the day into 𝑃𝑃 periods (here, 𝑃𝑃 = 3).  
As before, the hours of the day are cut, with each cut reflecting the first hour of a given period.  
More periods can be added by inserting more “cuts”.   

ℎ𝑎𝑎 ⋯ ℎ𝑏𝑏−1���������
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴

    |   �⃖�����⃗  ℎ𝑏𝑏 ⋯ ℎ𝑐𝑐−1���������
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐵𝐵

    |   �⃖�����⃗  ℎ𝑐𝑐 ⋯ ℎ𝑎𝑎−1���������
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐶𝐶

 

Each season can have a different period specification and, indeed, different number of periods.  
Assuming that the hours of the year are cut at hours 3, 12, and 16, we are left with three periods 
running (Hours 3-11; 12-15; 16-24 and 1-2).  Note, at present, the algorithm does not make a 
distinction between weekdays and weekends when segmenting periods, although this could be 
incorporated if warranted. 
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Using this general approach, all hours of the year can be grouped into a set of contiguous 
seasons and periods where are both mutually exclusive and collectively exhaustive.   

Having identified each hour as belonging to a specific season and a specific period, the 
algorithm calculates the price of delivering energy in that season/period.  Energy prices and 
customer demand varies hour-to-hour, but the TOU rate must simplify that variability into a much 
smaller set rate schedule.  The TOU period’s rate equals the real-time load-weighted price.  Each 
season/period has a distinct price based on the underlying fluctuation in market prices and 
demand.  Importantly, the total cost to serve load is the same under the real-time price and the TOU 
rate.1  Or, put more simply, over the course of the year, the TOU rate generates total revenue equal 
to the real-time cost of serving customer demand (assuming that existing load is not price 
responsive).2 

 

2.2 Assessing the Goodness-of-Fit of a TOU Specification 

The period prices developed in the preceding section are averages.  While they accurately reflect 
periods average price of electricity, there may be substantial deviations between the real-time price 
and the TOU rate on an hour-to-hour basis.  Imagine, for example, a period where real-time prices 
all equally likely to be $20/MWh or $100/MWh.  The average price will be $60/MWh – but in half of 
hours the TOU price will be $40/MWh too high and in half of hours it will be $40/MWh too low.  
While costs would be covered on average, the average price does a poor job of reflecting the 
variability in the underlying real-time prices.   

All else equal, a better TOU tariff should more closely mirror real-time prices and have 
deviations of lower magnitude.  I capture the magnitude of deviations using the common Sum 
Squared Error (“SSE”) metric: 

𝑆𝑆𝑆𝑆𝑆𝑆 = �(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ,𝑇𝑇𝑇𝑇𝑇𝑇)2
𝐻𝐻

ℎ=0

 

SSE measures how much the TOU varies from the real-time prices across the full study period, 
putting added weight on the periods when the two prices diverge more.  If the real-time prices 
closely mirror the TOU price, then the SSE will be small.  If real-time prices fluctuate widely around 
the TOU price, however, residuals and SSE will be high.  On a relative basis, a TOU rate which more 
closely mirrors the underlying real-time prices will have a lower SSE and be deemed a better fit.   

 

2.3 Searching for High Quality TOU Specifications using Random-Restart Hill-Climbing 

The preceding sections provide a framework to evaluate a specific TOU specification, but another 
tool is needed to search for TOU parameterizations which closely fit the underlying dataset.   There 

 
1 ∑ �𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 × 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ�𝐻𝐻

ℎ=0 = ∑ �𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ,𝑇𝑇𝑇𝑇𝑇𝑇 × 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ�𝐻𝐻
ℎ=0  

2 Extending this model to account for consumer response to the TOU is a conceptually a simple addition.    
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are many possible TOU specifications – enough that it is infeasible to assess all combinations 
directly.3   

Instead of brute-force trial and error, it is faster and easier to use a search algorithm to 
identify high quality specifications.  In this implementation, I rely on a on a random-restart hill-
climbing algorithm which finds local minima based on many trials with randomly selected starting 
parameterizations.xxiv  The algorithm initializes a trial with a randomly selected TOU specification 
and assesses the SSE of this starting parameterization.  The steepest-ascent hill climbing algorithm 
searches all adjacent TOU specifications (parameter ± 1 hour or ±1 month) and, as possible, the 
moves to the adjacent specification with the lowest SSE.  It will repeat this search process – 
updating the specification along the way – until no further improvements can be found.  After many 
trials, each with many iterative steps and even more adjacent assessments, the TOU specification 
with the lowest SSE is deemed optimal.  (If there are nonconvexities in the search space, local-
search routines like this hill-climber can get stuck in local minima rather than finding the true the 
global minimum; repeated trials with random initialization help ensure that the global minimum is 
identified.)  

 Because the search algorithm endogenizing tradeoffs across seasons and periods, it can 
generate optimal TOU specifications which closely reflect the underlying real-time prices and 
underlying marginal costs. 

 

2.4 Incorporating Economic or Policy Constraints 

Evaluations of TOU efficacy have shown that consumers respond better to relatively short peak 
periods and to higher differentials between off-peak and peak period prices. xxvxxvi  While the TOU 
rates modeled here are designed to reflect marginal costs so that as customers respond to a price 
signal aligned with actual system costs, policy constraints can be added to the search routine.  
These could take many forms. For example, minimum or maximum period lengths can be required 
to ensure that a peak period fits into some range of possible durations.  Shoulder months could be 
forced into certain season.  TOUs where the peak/off-peak price ratio is close to 1:1 could be 
discarded, because they are unlikely to shift consumption or reduce peak demands.   

 

2.5 Comparing Results from different TOU Specifications 

Using the techniques developed above, it is possible to identify an efficient, cost-based TOU for a 
given TOU specification.  But what if we want to compare how the best 2-season/2-period 
specification compares to the best 2-season/3-period alternative?  How should we decide which 
specification is better and how can we tell?  All else equal, increasing the number of TOU periods 
and seasons should decrease SSE values, implying improved goodness of fit.  At the extreme, a TOU 
which has the same number of periods/seasons as it has hours will have an SSE of zero (because 
each TOU period has its price equal to the hourly real-time price).  As with traditional statistical 
models, there is the possibility of “overfitting” the TOU.  This has two problems.   

 
3 For a 2-Seasons / 3-Period TOU, there are more than 270 million possible specifications: 

� 24!
3!(24−3)!

�
2

× � 12!
2!(12−2)!

�.  The problem gets much harder still, with larger numbers of seasons or periods. 
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On a substantive level, a highly granular TOU with many seasons/periods may be less 
understandable (or actionable) to customers, violating one of Bonbright’s canonical criteria of 
desirable rate structures.xxvii

xxviii

  If there are too many periods, regular customers may find it difficult 
to effectively schedule or defer energy intensive tasks to lower-price periods.  A simpler tariff may 
provide more actionable price signals – at the expensive of some efficiency.  On a technical level, if 
the TOU if “overfit” such that it closely mirrors the underlying historic (“training”) dataset, then the 
TOU specification may fare poorly when implemented.  Overfitting a TOU could result in the utility 
significantly over-collecting or under-collecting its revenue requirement requiring more active 
stewardship.  

 To overcome these challenges and important qualitative considerations, it is possible to 
adapt standard statistical tools to identify how differing model specifications fare compared to one-
another.  Relative model quality can be assessed using metrics such as the Akaike information 
criterion (AIC) or the Bayesian information criterion (BIC).  For a set of candidate specifications, 
AIC and BIC estimate the quality of each model, relative to each of the other models.  Each of these 
metrics includes a term which penalizes “bigger” models (here, those TOU specifications with more 
seasons and periods) and allow for explicit tradeoffs between model specificity and parsimony.  In 
both cases, a smaller AIC or BIC value indicates a “better” model.  BIC will penalize a “bigger” model 
more than AIC.    The general formulas for AIC and BIC are:  

AIC = 𝑛𝑛 × ln(𝑆𝑆𝑆𝑆𝑆𝑆/𝑛𝑛) + 2 × 𝑘𝑘 

BIC = 𝑛𝑛 × ln(𝑆𝑆𝑆𝑆𝑆𝑆/𝑛𝑛) + 𝑘𝑘 × ln(𝑛𝑛) 

Where,  
𝑆𝑆𝑆𝑆𝑆𝑆 is the model’s sum squared error, 
𝑛𝑛 is the number of values in the dataset, and 
𝑘𝑘 is the number of parameters in the TOU specification. 

 
In practice, a TOU specification is a kind of model specification, so AIC and BIC can be used to 
directly compare the quality of different TOU specifications and allow for the selection of the most 
parsimonious but information rich TOU.  It is not the absolute size of the AIC/BIC value that is 
important, but the relative values – and relative differences -- over the set of models considered.  
Thus, we can use AIC/BIC metrics for direct comparison of competing rate designs, even if those 
designs have different seasons, periods, or price differentials.  The “better” design is the one which 
has a lower AIC or BIC metric than its competitor.   
 
 

2.6 Mostly Endogenous TOU Selection 

Section 2.3 offers a method to find high-quality TOU specifications that correspond to exogenous 
assumptions about the number of seasons and periods.  This constrained search is helpful if 
installed electricity meters have constraints on the number of periods/seasons it can track.4  If 
metering does not pose a technical challenge, however, exogenous requirements on TOU 
specifications constraint can be easily relaxed.  In the same way that Section 2.3 randomly initialize 

 
4 For example, some early interval meters can only track four distinct time periods – and reprograming them 
on the fly can pose technical challenges.   
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trial parameters for a given TOU specification, it is also possible can also randomly initialize the 
TOU specification itself.   

Running random specifications through the search algorithm, then ranking results based on 
AIC/BIC metrics, provides a method to even more generally search across the whole domain of 
possible TOU rates.  In this most basic approach, rates can be established using four sets of 
constraints: 

• minimum and maximum number of seasons; 
• minimum and maximum length of each season; 
• minimum and maximum number of periods within a season; and, 
• minimum and maximum length of each period. 

For example, if it is decided that a TOU rate must have 1-3 seasons and that each season must have 
1-3 periods, then it is possible to assess a range of different TOU specifications ranging from a 
single year-round price up to a TOU with 9 discrete time/price segments.’ 

 

3. Calculation & Discussion for a Sample a California Utility 
Section 2 outlines a method to identify efficient TOU rates.  Now, I show how it could be 
implemented in practice.  Section 3.1 describes the dataset upon which the TOU search algorithm is 
run.  Section 3.2 demonstrates how to apply the technique when developing a TOU with a known 
number of seasons and periods (cf. Section 2.3).  Section 3.3 demonstrates how to compare the 
optimal rates from two different TOU specifications (cf. Section 2.5).  Section 3.4 demonstrates how 
the technique could be applied using the blank slate approach (cf. Section 2.6).  Please note that my 
purpose is not to suggest that the identified tariffs are “correct,” rather it is to demonstrate how the 
general methodology could be implemented in practice.   

 

3.1 Shape of Data 

The TOU search algorithm requires costing data on whichever functions are shaped within the TOU.  
If transmission and distribution costs are included in the TOU, then these functions much be shaped 
through some sort of cost allocation process which provides hourly T&D costs, ideally on a class-
level.xxix  For this analysis, I pair hourly load profiles with prospective marginal cost data from a 
California utility used in a rate-design docket.xxx  This utility resolved many nettlesome T&D and 
capacity cost allocation issues, and developed a dataset of hourly marginal costs for energy, 
capacity, and distribution.  Note that the specific prices and loads relied on in the section are less 
important than the concepts behind them.  Different cost allocations or load profiles may, of course, 
lead to materially different outcomes.  

Figure 1 plots the costs, by category, over the 2018-2019 timeframe.   While energy costs 
generally stay in a relatively tight band around $31/MWh, capacity costs are very high in a few 
hours (up to $20,000/MWh) but otherwise zero.  Distribution costs fall somewhere in between. 
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Figure 1: Hourly Prices by Category, 2018-2019 ($/MWh) 

 

3.2 The Optimal 2-Season / 2-Period TOU Rate 

Starting with a 2-season / 2-period TOU specification, I initialized the search algorithm 1,000 times.  
I also added two constraints: first, that each period be at least 4 hours in length and, second, that 
each season be at least three months long.  Each initialization had a different, randomly selected 
starting seasons and starting periods.  Across these 1,000 trials, the algorithm: 

• Made 24,723 discrete steps and nearly 150,000 unique fit assessments.   
• Took an average of 24.7 steps for a trial to reach its local minimum.    
• Found the optimal solution in 19% of trials, suggesting both that the optimal solution is 

stable, but also that that TOU surface is riddled with non-convexities.5  Adjacent solutions 

 
5 An investigation into the suboptimal trials suggests that many are orthogonally adjacent, or near adjacent, 
solutions along a ridge.  Ridges are a challenging problem for hill climber algorithms, because hill climbers 
only adjust one element in the vector at a time, each step will move in an axis-aligned direction. If the target 
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shifting summer peak period forward one hour or the summer season forward one month 
are the next-best fitting TOUs and account for another 42% of solutions. 

The optimal 2-season / 2-period is presented in Table 1.   

Table 1: Optimal 2-Season / 2-Period TOU Specification & Prices 

Season Period Hours 
(HE) 

Percent 
of Year 

TOU Price 
($/MWh) 

TOU 
Differentials 

Summer Peak 17-20 4.2% $427.38  7.65 : 1 
(Aug-Oct) Off-Peak All Others 21.0% $55.89    
Winter Peak 18-21 12.5% $91.08  2.64 : 1 
(Nov-Jul) Off-Peak All Others 63.3% $34.53    

 

These price differentials are material: 7.65:1 in the summer and 2.64:1 in the winter and would 
likely drive a change in consumption patterns.  While the peak prices are high, they are incurred for 
only a short duration.  The summer peak period accounts for 4.2% of all hours and the winter peak 
period just 12.5%.  More than 80% of hours have the low off-peak prices. (Note, extending the 
minimum duration of the peak-period would push these differentials down, if regulators deem 
these price differentials too extreme for policy reasons.  Reduced price differentials would come at 
the expense of efficiency.) 

Figure 2 depicts how the TOU rates compare to the underlying real-time prices.  The figure 
sorts the dataset first by the TOU rate (highest to lowest) then by the real-time price.  The result is a 
series of price-duration curves, conditioned on TOU price. Note that for legibility reasons, the 
results are plotted on a log scale. 

  

 
function creates a narrow ridge that ascends in a non-axis-aligned direction, then a superior orthogonal move 
requires two inferior moves (one up, one over).  Often, the hill climber will stall-out in these near-adjacent 
locations.  
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Figure 2: Distribution of Hourly and TOU Prices, sorted ($/MWh) 

 

The all-in rates in Table 2 can be decomposed into various rate-components by calculating the load-
weighted price of each component by season and period.  For example, the overall costs of the 2-
Season / 2-Period TOU rate can be split into discrete energy, capacity, and T&D cost components.  
Table 3 depicts these individual cost components. 

Table 2: Cost Components of 2-Season / 2-Period TOU Tariff 

Season Period TOU Price 
($/MWh) 

Energy 
($/MWh) 

Capacity 
($/MWh) 

Distribution 
($/MWh) 

Summer Peak $427.38  $37.40 $278.05 $111.92 
(Aug-Oct) Off-Peak $55.89  $31.07 $6.17 $18.64 
Winter Peak $91.08  $37.55 $40.81 $12.72 
(Nov-Jul) Off-Peak $34.53  $30.39 $0.64 $3.50 

 
This decomposition allows for regulators to appropriately group costs together into the standard 
bill components, rather than presenting a single, top-line rate.  When considering these sub-
components, it becomes apparent which subcomponents drive the all-in costs. Capacity and 
distribution costs drive costs in the summer peak period, accounting for 91% of the overall peak-
period price.  These capacity and distribution costs are 85% lower in the winter season, resulting in 
a much lower overall winter peak period rate.  In the off-peak period of nine winter months, the 
$34.53/MWh all in rate is predominately the cost of energy.  Distribution costs are non-zero in the 
winter off-peak period, but very small (about 10% of the winter off-peak rate).   

 



11 
 

3.3 Would a different Specification be Better? The Optimal 2-Season / 3-Period TOU Rate 

Would a 2-season / 3-period specification be preferable to the 2-season / 2-period developed in the 
previous section?   Using the same underlying dataset, I develop best-fitting 2/3 alternative rate 
then compare it to the 2/2 using the same method described in Section 2.5.    Table 3 presents the 
tariff’s optimal  all-in rates by season and period.  Note that the peak-periods are the same as in the 
2/2 rate, but that the off-peak rate has been split into two: a new middle price adjacent to the peak 
period with a differential of about 1.69:1 in the summer and 1.21:1 in the winter, and a very low off-
peak price which is mostly entirely comprised of energy costs.    

Table 3: Optimal 2-Season / 3-Period TOU Specifications & Prices 

Season Period Hours 
(HE) 

Percent 
of Year 

TOU Price 
($/MWh) 

TOU 
Differentials 

Summer Peak 17-20 4.2% $427.38  9.03 : 1 
 Mid 13-16 4.2% $79.77 1.69 : 1 
(Aug-Oct.) Off-Peak All Others 16.8% $47.33    
Winter Peak 18-21 12.5% $91.08 2.77 : 1 
 Mid 14-17 12.5% $40.00 1.21 : 1 
(Nov-Jul) Off-Peak All Others 49.9% $32.93    

 

Qualitatively, these period rates look materially different from one another (with the possible 
exception of the mid and off-peak winter prices).  The short-duration peak periods are high and 
should encourage reductions in peak period consumption.  (Based on prior econometric analysis, it 
seems doubtful that that winter-time mid-period will meaningfully change behavior compared to 
the off-peak period; both are low enough, however, to shift consumption away from the peak 
period.)   

The rates remain relatively simple and the year-round peak period enhances the simplicity 
and understandability touted by Bonbright.  Quantitatively, there is a modest improvement in the 
new 3-period rates.  Table 4 computes the AIC and BIC metrics for both models, which allows us to 
directly compare the information density of the two TOU specifications.  Recall at a lower AIC or BIC 
is better. 

Table 4: AIC and BIC Metric by TOU Specification 

Specification 2-Season / 3-Period 2-Season / 2-Period Difference 
Metric ( a ) ( b ) ( c ) = ( a ) - ( b ) 
AIC 205,171 205,172 -1 
BIC 205,233 205,219 +14 

 

In Table 4, we observe that both models are of roughly equal quality, and that the 3-Period model 
has slightly lower AIC and slightly higher BIC values than the 2-Period alternative.  This suggests 
that improved descriptive power of three-period specification approximately offsets the 
incremental complexity.  While it is not much worse than the two-period alternative, it is not 
obviously better, either.   
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3.4 The Optimal TOU Rate using Dynamic Specifications 

As noted in Section 2.6, TOU specifications can be endogenized to search a whole range of possible 
TOU configurations – differing numbers of seasons and differing numbers of periods in each season, 
Here, instead of presupposing a specific TOU specification, I randomly initialize possible TOU 
specifications by using a set of simple rules: 

• The TOU rate must have 1-3 Seasons; 
• Each Season must be at least 3 months long; 
• Each Season must have 1-3 Periods; and, 
• Each Period must be at least 4 hours long. 

This allows for TOUs ranging from a single year-round price up to a TOU with 16 discrete 
time/price segments.  To assess a range of different TOU specifications initializations, and possible 
non-convexities within a given specification, I ran the search algorithm 2,000 times.  As before, each 
initialization finds TOU with the lowest SSE value.  To find the best TOU rate, the 2,000 are then 
ranked by AIC – to allow for direct comparison across different specifications.  The most efficient 
rate has seven periods spread across three seasons and is presented in Table 5.   

Table 5: Optimal TOU Specification & Prices 

Season Period Hours 
(HE) 

Percent 
of Year 

TOU Price 
($/MWh) 

TOU 
Differentials 

Season 1 Peak 18-21 5.6% $73.57  2.12 : 1 
(April – July) Off-Peak All Others 27.9% $34.76   
Season 2 Peak 17-20 4.2% $427.38 9.03 : 1 
(August – October) Mid 13-16 4.2% $79.77 1.69 : 1 
 Off-Peak All Others 16.8% $47.33  
Season 3 Peak 17-20 6.9% $118.88  3.53 : 1 
(November – April) Off-Peak All Others 34.5% $33.70   

 

The prices in each season have meaningful differentials which could facilitate load shifting for 
flexible loads such as EV charging or space-heating.  The AIC metric does a reasonable job of 
screening out solutions with immaterial price differentials.  It is possible that further work could 
collapse each of the off-peak prices in Seasons 1 and 3 into a single value – further improving 
pricing clarity.   

The best specification using the BIC metric is the same 2x2 TOU described in Section 3.2.   

 

4. Conclusions 
The preceding analysis offers a proof-of-concept for finding high quality TOU specifications using 
algorithmic techniques.  I develop a method for calculating optimal TOU tariffs using granular price 
and load data, using a curve-fitting approach.  These optimal TOU tariffs include explicit tradeoffs 
between different cost categories and between different season or period durations.  This analysis 
also offers economic and statistical methods to choose between different specifications (e.g. 2-
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period vs 3-period specifications).  With the basic structure established, this work could be easily 
extended to capture added nuance.  For example, it could be extended to multiple rate classes or to 
capture how consumers may respond to the price signals embedded in the TOUs (by incorporating 
the price elasticity of demand).  The use of SSE and AIC/BIC metrics also provides a path forward to 
quantitatively evaluate the relative merits of alternative tariff proposals offered during a rate-case 
or other rate-design proceeding at a Public Utility Commission. 

 One insight from this TOU selection methodology and the underlying cost allocation is that 
in most hours of the year, the most efficient TOU rate should just slightly higher than the expected 
cost of energy.   The optimal peak periods are short in duration and very high price.  These short 
peak periods reflect the ground truth that many system costs are sized to meet peak demands.  
These time-differentiated rates would allow for selling of electricity in off-peak hours to a house, 
car, or heat-pump at a price much lower than average all-in prices.  These low prices are 
unsubsidized and do not cause cost shift from other customers – not so long as the T&D and 
capacity cost allocation remains representative of system costs.   

 This work is of practical value because it provides an objective metric against which 
proposed rates can be evaluated.  It also offers a path forward for modeling how retail rate designs 
should change in the face of increasing electrification of transportation and heating.  For example, 
this work suggests that EV specific rate-classes could offer very low charging off-peak prices 
because these periods do not materially affect capacity or T&D costs.  All-in rates measured below 
$60/MWh certainly look appealing in relation to the summer-peak rates nine-times that.  It also 
hints that policymakers may need to seriously contemplate shaping T&D and capacity costs in the 
cost-allocation process as energy-only TOU rates will generally exhibit modest differentials.  TOU 
rates offer a first-step towards more dynamic retail pricing schemes, and the methods outlined in 
this paper offer an objective method for deriving and defining the TOU rates. 
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